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Abstract

The aim of this thesis is to study properties of semimodules on semirings and con-
centrate on some types of semimodules, e.g., projective semimodules, injective semi-
modules. We start with providing some basics concerning semimodules and some
definitions and properties about 30 exact sequences and the homo-functor. After-
wards, in part three, we study some properties of projective ,injective S-semimodules
(N-projective semimodules, e-projective semimodules, N-e-projective semimodules,
N-injective semimodules, e-injective semimodules, N-e-injective semimodules), but
we concentrate mostly on projective semimodules.

Keywords: projective semimodule, N -projective semimodules, e-projective semi-
modules, injective semimodule, N -injective semimodules, e-injective semimodules,
N − e-injective semimodules, exact sequence.
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Chapter 1

Introduction

In the past few years, many researchers introduced several generalizations of semi-
modules over semirings, and showed to have many applications in our life (such
as, in computer science) as we see these applications in [14], [12], [21], and we find
several of these applications in [13] (the main reference of this subject).

During 1981− 1990 M. Takahashi characterized the definitions of semimodules in a
series of several papers in this period, he characterized two main ideas: the first one
is tensor products [25] and the second one is exact sequences [23], and his character-
izations were used by most of the researchers in this subject in the last century.

In 21st century, many researchers began to use a more definitions of semimodules
over semirings specially about the tensor product of semimodules as we see in [20],
[5] developed these definitions with the category of semimodules over a commutative
semiring.

In 2003, several definitions of exact sequences was introduced as we see in [22],
the most of these recent definitions was seen in [1] based on an intensive study of
the nature of the category of semimodules over a semiring.

Several papers by Abuhlail, I ′llin, Katsov prepared special topics of semirings
using special in projective, injective and flat semimodules ([1], [2],[3], [15], [17], [18],
[19]).

In the recent years, all of congruence-simple left (right) semimodules that are in-
jective have been completely characterized in [2], and ideal-semisimple semirings all
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of whose left cyclic semimodules are projective have been investigated in [16]. And
through their papers, introduced in addition to the categorical notions of projec-
tive, injective and flat semimodules over a semiring, e.g., k-projective semimodules,
i-injective semimodules, and e-projective semimodules, normally projective semi-
modules, e-injective semimodules, normally injective semimodules.

In this thesis, we try to clarify what has been done so far and review it in our
own way. Hopefully, we can add something new with this promising future..
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Chapter 2

Preliminaries

In this section, we start with the basic definitions and results required
in this thesis. Any notations of definition and results not found in this
section can be found in [13].

2.1 Basic Definitions and Examples

Definition 2.1.1. [13] A semiring is (S,+, 0, ·, 1) consisting of a
nonempty set S along with two binary operations ” + ” (addition)
and ” · ” (multiplication) such that:
(1) the set (S,+, 0) is commutative monoid with neutral element 0.
(2) the set (S, ·, 1) is a monoid with neutral element 1.
(3) 0 6= 1.
(4) s · 0 = 0 = 0 · s for any s belongs in S.
(5) For any s1, s2, s3 ∈ S we have that

s1(s2 + s3) = s1s2 + s1s3 and (s1 + s2)s3 = s1s3 + s2s3

.
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Definition 2.1.2. .[13] Let (S,+, 0, ·, 1) be a semiring.

• If 0, 1 ⊆ S ′ ⊆ S and S ′ is closed under the two binary operations ” + ”
and ” · ”, then S ′ is a subsemiring of S.

• If the monoid (S, ·, 1) is commutative, then S is a commutative semiring.

• If (S \ {0}, ·, 1) is a group, then S is a division semiring.

• A commutative division semiring is called a semifield.

• Let s ∈ S, then s is additive idempotent element of S if and only if
s+ s = s.
The set of additive idempotent elements is defined as

I+(S) := {s ∈ S | s+ s = s}. (1)

If I+(S) = S, then S is additively idempotent.

• The set of multiplicatively idempotent elements of S is defined as

I×(S) := {s ∈ S|s · s = s}. (2)

If I×(S) = S, then S is multiplicatively idempotent .

• The set of idempotent elements of S is defined as

I(S) := I+(S) ∩ I×(S). (3)

If I(S) = S, then S is called idempotent semiring .

• Let s ∈ S, then s is called additive inverse, if ∃s′ such that s+ s′ = 0.
The set of additive inverse of S is denoted by V (S), defined by:

V (S) := {s1 ∈ S|s1 + s2 = 0 for some s2 ∈ S}. (4)
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If V (S) = {0}, then S is called zerosumfree. Notice that V (S) = S
if and only if S is a ring.

• Let s ∈ S, then s is called cancellative element , if for any a, b ∈ S
such that s+ a = s+ b, then a = b. The set of cancellative elements
of S is denoted by K+(S), defined by:

K+(S) = {s ∈ S|s+ a = s+ b =⇒ a = b for any a, b ∈ S}

if K+(S) = S, then S is called cancellative semiring .

• Let s ∈ S, then s is called a zero divisor of S if st = 0 or ts = 0 for
some t ∈ S \ {0}. If S has no non-zero zero-divisors, then S is called
entire.

• If a ∈ S is such that s + a = a for all s ∈ S, then a is called an
infinite element of S. If S has an infinite element, then it is unique.

• If a ∈ S is an infinite element such that sa = a = as for all s ∈ S\{0},
then a is a strongly infinite element .

• The zeroid of S is defined as

Z(S) = {z ∈ S|z + s = z for some s ∈ S}. (5)

A semiring S is called a zeroic semiring if Z(S) = S, otherwise S is
non-zeroic. On the other hand, S is a plain semiring if Z(S) = {0},
otherwise S is nonplain.

• A left ideal I of a Semiring S is a nonempty subset of S satisfying
the following conditions:

(1)If a, b ∈ I then a+ b ∈ I.
(2)If a ∈ I and s ∈ S then sa ∈ I.
(3)1 6= S.
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A right ideal is defined by the same way as the left ideal is defined.
Now a nonempty set I of S is called an ideal of S if and only if it is
both left and right ideal. The set of all left ideals of S is denoted by
lideal(S), the set of all right ideals of S is denoted by rideal(S), and
the set of all ideals of S is denoted by ideal(S).

• Let S be a semiring, and C is a nonempty subset of S, then the set SC
is consisting of all finite sums

∑
i∈I
sici, where si in S and ci in C.

Note that the set SC is the smallest left ideal of S containing C.

• Let S be a semiring, and M is a left ideal of S [resp. Right ideal, ideal],
then M is called finitely generated if and only if there exists a
nonempty subset B of S satisfies that M = SB [resp. M = BS, M =
(B)].

• Let S be a semiring, and N is a left ideal of S, then N is called prin-
cipal if and only if there exists an element b of S such that N = Sb

[resp. N = bS, N = (b)].

Examples [13]

• Every ring is a cancellative semiring.

• Every distributive bounded lattice ` = (L,∨, 1,∧, 0) is a commu-
tative idempotent semiring and 1 is an infinite element of `.

• Let R be any ring. The set ℘ = (Ideal(R),+, 0·, R) of ideals of R
is a zero−sumfree semiring and R is a strongly infinite element
of ℘.

• The set (Z+,+, 0, ·, 1) of non-negative integers is a commutative
cancellative zerosumfree entire semiring which is not a ring.
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• The set (R+,+, 0, ·, 1) of non-negative real numbers is a semifield.
The subset (Q+,+, 0, ·, 1) of non-negative rational numbers is a
subsemifield of R+, and Z+ is subsemiring of Q+.

• Mn(S), the set of all n×n matrices over a (zerosumfree) semiring
S, is a (zerosumfree)semiring.

• The Boolean algebra B := {0, 1} with 1 + 1 = 1, 1.1 = 1 is
an idempotent semifield which is not a field and 1 is a strongly
infinite element of B.

• The max-plus algebra Rmax,+ := (R ∪ {∞},max,−∞,+, 0) is an
additively idempotent semiring.

• The min-plus algebra Rmin,+ := (R ∪ {∞},min,∞,+, 0) is a ad-
ditively idempotent semiring.

• The max-min algebra Rmax,min := (R∪{−∞,∞},max,−∞,min,∞)
is an idempotent semiring and∞ is the infinite element of Rmax,min.

Definition 2.1.3. [13] Let S be a semiring, and K is a nonempty
subset of S, then the commutative monoid set (K,+, 0K) with a map

S ×K −→ K, (s, k)→ sk, (called scalar multiplication)

is called left S-semimodule if and only if satisfies the following con-
ditions for any k, k1, k2 in K and s, s1, s2 in S:
(1) (s1s2)k = s1(s2k).
(2) s(k1 + k2) = sk1 + sk2.
(3) (s1 + s2)k = s1k + s2k.
(4) 1Sk = k.
(5) s0K = 0K = 0Sk (0K 6= 0S).

If M is a left S − semimodule, and (L,+, 0M) ≤ (M,+, 0), is a
submonoid such that sl ∈ L for all s ∈ S and l ∈ L, then L is an
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S-subsemimodule of M and write L ≤M .

Definition 2.1.4. Let A,B are left S-semimodules of semiring S, then
the function β : A −→ B is S-homomrphism if and only if satisfies
the following:

• β(a1 + a2) = β(a1) + β(a2) for all a1, a2 ∈ A.

• β(sa) = s(β(a)) for all a ∈ A and s ∈ S.

The set HomS(M,N) of all S-homomorphisms from M to N is a
commutative monoid under the usual addition of maps. The category
of left S − semimodules and S-homomorphisms is denoted by SSM.
The category SMS of right S − semimodules is defined analogously.

Definition 2.1.5. Let S and T are semirings, and K is a left S-
semimodule and a right T-semimodule satisfies that (sk)t = s(kt) for
any s in S, t in T and k in K, then K is an (S,T)-bisemimodule.
The category of (S,T)-bisemimodules, with arrows being the left S-
homomorphisms right T -homomorphism, is denoted by SSMT .

Definition 2.1.6. Let S be a semiring. A left (resp., right) ideal of
S can be defined as an S-subsemimodule of SS (resp., of SS). A (two-
sided) ideal of S can be defined as an (S,S)-subbisemimodule of SSS.

Definition 2.1.7. Let S be a semiring and M a left S-semimodule.
The subsets I+(M) (resp., V (M), K+(M), Z(M)) of M are defined in
a way analogous to that defined for the semiring S, and M is called an
additively idempotent semimodule (resp., zerosumfree semi-
module, cancellative semimodule, zeroic semimodule, plain
semimodule) if I+(M) = M (resp., V (M) = 0, K+(M) = M ,Z(M) =
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M , Z(M) = {0M}).

Example 2.1.1. Let S be a semiring with additive identity 0, and
multiplicative identity 1, then S and SΛ(where Λ is an index set, and
SΛ is the direct sum of S over Λ) are (S, S)-bisemimodules with left
and right actions induced by ” · ”.

Example 2.1.2. Consider the semiring M2(R+). Then

E1 = {
(
a 0
b 0

)
| a, b ∈ R+} is left M2(R+)− semimodule

and

E2 = {
(

0 a

0 b

)
| a, b ∈ R+} is right M2(R+)− semimodule

Definition 2.1.8. [13] Let S be a semiring and K is a left S-semimodule
and Y ≤ K, then:

• The subtractive closure of Y is defined by

Y := {k ∈ K | k + y = y′ for some y, y′ ∈ Y }.

• Y is called subtractive if and only if Y = Y .

• The left S-semimodule K is called a subtractive semimodule if and
only if any S-subsemimodule Y ≤ K is subtractive.

Definition 2.1.9. [13] Let S be a semiring, then S is a left subtrac-
tive semiring (right subtractive semiring) if every left (right)
ideal of S is subtractive.

9



S is a subtractive semiring if S is both left and right subtractive.

Definition 2.1.10. [13] Let S be a semiring, and N is a left S-semimodule,
then ρ is called a congruence relation if it satisfies the following:
for all s ∈ S and n, n′, a, a′ ∈ N :

nρn′ and aρa′ ⇒ (n+ a′)ρ(a+ n′),

nρn′ ⇒ (sn)ρ(sn′).

Example 2.1.3. Let S be a semiring, and M is a left S-semimodule
and N ≤M . The Bourne relation ≡N on M is defined as:

m ≡N m′ ⇔ m+ n = m′ + n′ for some n, n′ ∈ N

It is clear that ≡N is a congruence relation. Moreover, M/N =
M/ ≡N= {[m]N | m ∈ M}(= M/N) is a left S-semimodule, the
canonical surjective map πN : M −→ M/N is S-homomorphism,
and Ker(πN) = N , In particular, Ker(πN) = 0 if and only if N ≤M

is subtractive (this explains why subtractive ideals are called k-ideals
in many references).

Definition 2.1.11. Let S be a semiring and K is a left S-semimodule,
then K is called :

• Ideal-simple if and only if the only S-subsemimodules of K are 0 and
K.

• Congruence-simple if and only if the only congruence relations on
K are {K ×K, and 4K := {(k, k) | k ∈ k}}.

Remark 2.1.1. Let S be a semiring and K is a congruence-simple
left S-semimodule, then the only subtractive S-subsemimodules of K
are 0 and K.

10



Proof. Suppose that N 6= 0 is a subtractive S-subsemimodule of K.
Then≡N is a congruence relation onK with n ≡N 0 for some n ∈ N\0.
Thus ≡N 6= ∆K , which implies ≡N= K2 as K is congruence-simple. If
k ∈ K, then kK20, that is k ≡N 0. Therefore, there exist n, n′ ∈ N
such that k + n = n′. Since N subtractive, k ∈ N . Hence K = N .

�

Example 2.1.4. [19] Let (M,+, 0) be a finite lattice that is not dis-
tributive. The endomorphism semiring EM of M is a congruence-
simple semiring which is not ideal-simple.

Example 2.1.5. [19] Every zerosumfree division semiring that is not
isomorphic to B (e.g.,R+) is left ideal-simple but not left congruence-
simple. Notice that D is ideal-simple as the only left ideals of D are {0}
and D. On the other hand, if D is not isomorphic to B. Then

ρ = {(a, b) | a, b ∈ D\{0}} ∪ {(0, 0)}

is a non-trivial non-universal congruence relation on DD, whence D
is not left congruence semisimple.

Lemma 2.1.1. A left S-semimodule M is congruence-simple if and
only if every nonzero S-homomorphism from M is injective.

Proof. (⇒) Let f : M −→ N be a non-zero S-homomorphism and
pick some m ∈ M\{0} such that f(m) 6= 0. Since ≡f is a congru-
ence relation on M with m 6≡f 0, we know ≡f 6= M 2. It follows that
≡f= ∆M as M is congruence-simple. Hence f is injective.
(⇐) Assume that M is congruence-simple. Let ρ be a congruence re-
lation on M. The canonical map f : M −→M/ρ is S-homomorphism.
If f = 0, then [m]ρ = [0]ρ for every m ∈ M , that is mρ0 for every
m ∈ M and mρm′ for every m,m′ ∈ M . If f 6= 0, then f is injective,
that is [m]ρ 6= [m′]ρ whenever m 6= m′. Thus m 6 ρ m′ whenever
m 6= m′ and ρ = ∆M .

�
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Lemma 2.1.2. A left S-semimodule M is ideal-simple if and only if
every non-zero S-homomorphism to M is surjective.

Proof. (=⇒)Let f : L −→ M be a non-zero S-homomorphism. Then
there exists l ∈ L\0 such that f(l) 6= 0. Thus, f(L) is a non-zero
subsemimodule of M and so f(L)=M as M ideal-simple.
(⇐=)Let K be a subsemimodule of M. Then the injection map i :
K −→ M is an S-homomorphism. If i = 0, then K = i(K) = 0. If
i 6= 0, then i is surjective, that is K = i(K) = M.

�

Definition 2.1.12. [13] Suppose that S is a semiring and N is a left S-
semimodule, then N is called the direct sum of a family {Kλ}λ∈Λ of
S-subsemimodules (where Kλ ≤ N), and N can be written as N =⊕
λ∈Λ

Kλ , if for any n ∈ N can be written uniquely as a finite sum

n = kλ1 + . . .+ kλk where kλi ∈ Kλi for any i = 1, . . . , k. Equivalently,
N =

⊕
λ∈Λ

Kλ if N=
∑
λ∈Λ

Kλ and for each finite subset A ⊆ Λ with ka, k
′
a ∈

Ka, we have:∑
a∈A

ka =
∑
a∈A

k′a =⇒ ka = k′a for all a ∈ A.

Definition 2.1.13. Let S be a semiring, then an S-semimodule M a
retract of an S-semimodule N if there exist a (surjective) S-homomorphism
φ : N −→ M and an (injective) S-homomorphism α : M −→ N such
that φ ◦ α = idM .

Definition 2.1.14. Let S be a semiring, then an S-semimodule M
is called a direct summand of an S-semimodule N if and only if
N = M ⊕M ′ for some S-subsemimodule M ′ of N.

12



Remark 2.1.2 An S-semimodule M is a direct summand of an S-
semimodule N if and only if there exists φ ∈ Comp(End(NS)) s.t.
φ(N) = M where for any semiring S we set

Comp(S) = {s ∈ S | ∃s′ ∈ S with s+ s′ = 1S and ss
′ = 0S = s′s}.

Proof. (=⇒) Suppose M is a direct summand of N and if we have
i : M −→ N be the inclusion map, then M = πM(N) where πM is an
endomorphism of N . Now, if N = M ⊕M ′ then πM + πM ′ = 1S and
πM ◦ πM ′ = πM ′ ◦ πM = 0S so πM ∈ comp(S).
(⇐=) let M = φ(N) for some φ ∈ comp(S). If M ′ = φ⊥(N) then it
is obvious to verify that N = M ⊕M ′. �

Now, we have that every direct summand of a S-semimodule N is a
retract of N , but in general the converse is not true.

Remarks 2.1.3. Let S be a semiring, C is a left S-semimodule and
X, Y ≤ C be S-subsemimodules of C, then we have the following:

(1)If X + Y is direct, then X ∩ Y = 0, but the converse is not true.

(2) If C = X ⊕ Y , then C/X ' Y .

The following example proves that the converse of part one in the
previous remark is not true.

Example 2.1.6. Let S = M2(R+). Notice that

E1 = {
(
a 0
b 0

)
| a, b ∈ R+}

13



and

N1 = {
(
a c
b d

)
| a ≤ c, b ≤ d, where a, b, c, d ∈ R+}

are left ideals of S with E1 ∩N1 = {0}. However, the sum E1 +N1 is
not direct since(

1 0
0 0

)
+

(
0 1
0 0

)
=

(
0 0
0 0

)
+

(
1 1
0 0

)
Definition 2.1.15. [13] Suppose that S is a semiring, then a left S-
semimodule N is called :

• ideal-semisimple if it is a direct sum of ideal-simple S-subsemimodules
(N =

⊕
λ∈Λ

Nλ).

• Congruence-semisimple if it is a direct sum of congruence-simple
Subsemimodules (M =

⊕
λ∈Λ

Mλ).

Suppose that S is a semiring and N is a left S-semimodule, then
for a nonempty subset B of N there exists an S-homomorphism φ :
S(B) → N defined by φ : g 7→

∑
m∈B

g(m)m. Note that the set B is a set

of generators for N precisely if φ is surjective. Moreover, φ induces an
S-congruence relation ≡φ on S(B) as defined as φ ◦ g = φ(f).

• The setB is called linearly independent if and only if
∑
m∈B

f(m)m =∑
m∈B

g(m)m implies that f = g(the trivial relation).

• The set B is called linearly dependent If it is not linearly in-
dependent.

• The nonempty subset B of N is called a basis of N over S if and
only if it is linearly-independent set of generators for N .

14



Definition 2.1.16. [13] Let S be a semiring, then a left S-semimodule
M is called free S-semimodule if and only if it has a basis over S.

Let S be a ring and N is a left S −module, then the definition of
free R-module is the same as in case of S-semimodule. Since not every
module over a ring is free, certainly not every semimodule over a
semiring is free. As a result of definitions, we note that if B is a
nonempty set, then the left S−semimodule S(B) is free, and that for
every free left S − semimodule is S − isomorphic to S(B) for some
suitable nonempty set B.

Proposition 2.1.3. [13] Suppose that S is a semiring and N is a left
S-semimodule then there exists a free S-semimodule M and a surjective
S-homomorphism from M to N.

Proof. Suppose N is a left S − semimodule, then we have two cases:
Case (1) if N = {0}, we have done.
Case (2) if N 6= {}. Let N ′ = N {0} and let M = S(N ′). Let
φ : M → N is defined by φ : g 7→

∑
m∈supp(g)

g(m). This is obvious a

surjective S-homomorphism. �

Proposition 2.1.4. [13] Let S be a semiring and N is a free left S-
semimodule with basis B and let M be an arbitrary left S-semimodule.
Now for any function f ∈MB, then there is a unique S-homomorphism
φ : N →M satisfy that φ(b) = f(b) for any b ∈ B.

Proof. Since N is free, then We can write any element n of N uniquely
in the form

∑
b∈B

sbb, where sb ∈ S only finitely − n any of which are

nonzero. Let φ : M → N be a function is defined by
∑
sbb 7→ sbfb.

It is obvious to varify that φ is an S-homomorphism. Moreover, if
α : N → M is an S − homomorphism satisfying that α(b) = f(b)
for any b ∈ B, then α(

∑
sbb =

∑
sb(α(b)) =

∑
sbf(b) =

∑
sbα(b) =

α(
∑
sbb) and so φ = α, so φ is unique. �
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Remark 2.1.4 If S is a semiring, and N is a left S−semimodule, B
is a nonempty set, and if f is a function from B to N , then there exists
a unique S-homomorphism φ : S(B) → N such that φ : gb 7→ f(b),
where gb ∈ SB for any b ∈ B.

2.2 Exact Sequences

During this work, (S,+, 0, ·, 1) is a semiring.

Definition 2.2.1. Let N and M are S-semimodules, then the mor-
phism map φ : M −→ N is called

• k-normal if whenever φ(n) = φ(n′) for some n, n′ ∈ N , then we have
n+ k = n′ + k′ where k, k′ ∈ Ker(φ).

• i-normal if Im(φ) = φ(M)(:= {n ∈ N | n + m ∈ M for some m ∈
M}).

• Normal if and only if the map φ satisfies the both properties (k-
normal and i-normal).

Remarks(1) If we see in [23] and [13], we find that the definitions
of k-normal (resp., i-normal, normal) S-homomorphisms are called k-
regular (resp., i-regular, regular) morphisms. So we changed them to
avoid any confusion about the definitions of regular monomorphisms
and regular epimorphisms when applied to categories of semimodules,
because they will have different meanings in this case.

(2) every surjective S-homomorphism is i-normal, whence the k-normal
surjective S-homomorphism are normal and are precisely the so-called
normal epimorphisms. On the other hand, the injective S-homomorphisms
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are k-normal, whence the i-normal injective S-homomorphisms are
normal and are precisely the so called normal monomorphisms
see [1].

Lemma 2.2.1. Suppose that L, M, and K are S-semimodules, and

K
h−→ L

f−→M be a sequence of semimodules.

(1) Suppose that f is injective, then we have the following:

• (a) h is k-normal if and only if f ◦ h is k-normal.

• (b) f ◦ h is i-normal(normal), then h is i-normal(normal).

• (c) Assume that f is i-normal. Then h is i-normal(normal)if and only
if f ◦ h is i-normal(normal).

(2)Suppose that h be surjective, then we have the following:

• (a) If f is i-normal if and only if f ◦ h is i− normal.

• (b) If f ◦ h is k − normal(normal), then f is k − normal(normal).

• (c) Assume that h is k − normal. Then f is k − normal(normal) if
and only if f ◦ h is k − normal(normal).

Proof. (1) Let f be injective: in particular, f is k-normal.

(a) Suppose that h is k−normal. Assume (f ◦h)(k1) = (f ◦h)(k2) for
some k1, k2 ∈ K. Since f is injective, h(k1) = h(k2). By assumption,
then there exist b1, b2 belongs to Ker(h) such that k1 + b1 = k2 + b2.
Since Ker(h) ⊆ Ker(f ◦ h), so we have f ◦ h is k-normal. Moreover,
suppose that f ◦h is k−normal. Assume that h(k1) = h(k2) for some
k1, k2 belongs to K. Then (f ◦h)(k1) = (f ◦h)(k2) so there exist b1, b2
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belongs to Ker(f ◦h) such that k1 + b1 = k2 + b2. Since f is injective,
Ker(f ◦ h) = Ker(h) whence h is k − normal.

(b) Suppose that f ◦ h is i − normal. Let l ∈ h(K), so we have
l + h(k1) = h(k2) for some k1, k2 belongs to L. Then we have f(l)
belongs to (f ◦ h)(K) = (f ◦ h)(K). Since f is injective, l belongs to
h(K). So h is i− normal.

(c) Suppose that f and h are i − normal. Now Let m belongs to
(f ◦ h)(K), so we have m + f(h(k1)) = f(h(k2)) for some k1, k2 be-
longs to K. Since f is i − normal, m belongs to f(L) say n = f(l)
for some l ∈ L. Not that f is injective, whence l + h(k1) = h(k2),
(i.e. l ∈ h(K) = h(K) since h is i − normal by assumption, so
n = f(l) ∈ (f ◦ h)(K). We conclude f ◦ h is i− normal).

(2) Let h be surjective, in particular, h is i− normal.

(a) Suppose that f is i − normal. Let m belongs to (f ◦ h)(K), so
m + f(h(k1)) = f(h(k2)) for some k1, k2 belongs to L. Since f is
i− normal, m = f(l) for some l belongs to L. Since h is surjective,
m = f(l) ∈ (f ◦h)(K), so f ◦h is i−normal. Moreover, suppose f ◦h
is i−normal. Now suppose m belongs to f(L), so m+f(l1) = f(l2) for
some l1, l2 belongs to L. Since h is surjective, there exist k1, kl2 ∈ K
such that h(k1) = l1 and h(k2) = l2. Then m+(f ◦h)(k1) = (f ◦h)(k2),
i.e. (m belongs to (f ◦ h)(K) = (f ◦h)(K) ⊆ f(L). So f is i−normal.

(b) Suppose f ◦ h is k − normal. Assume f(l1) = f(l2) for some
l1, l2 belongs to L. Since h is surjective, then (f ◦h)(k1) = (f ◦h)(k2)
for some k1, k2 belongs to K. By assumption, f ◦ g is k− normal and
so there exist b1, b2 belongs to Ker(f ◦ h) such that k1 + b1 = k2 + b2

whence l1 + h(b1) = l2 + h(b2). Indeed, h(b1), h(b2) belongs to Ker(f).
i.e. (f is k − normal).
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(c) Suppose h and f are k−normal. Assume (f ◦h)(k1) = (f ◦ g)(k2)
for some k1, k2 belongs to K. Since f is k−normal, then h(k1) + b1 =
h(k2) + b2 where b1, b2 belongs to Ker(f). But, h is surjective,
whence b1 = h(l′1) and b2 = h(k′2) where k′1, k

′
2 belongs in K, i.e.

h(k1 +k′1) = h(k2 +k′2). Since h is k−normal, k1 +k′1 +b′1 = k2 +k′2 +b′2
where b′1, b

′
2 belongs to Ker(h). Indeed, k′1 + b′1, k

′
2 + b′2 belongs in

Ker(f ◦ h). We conclude f ◦ h is k-normal.
�

Lemma 2.2.2. (1) Let {fλ : Lλ −→ Mλ}Λ be a family of left S-
semimodule morphisms and consider the induced S-homomorphism
f :
⊕
λ∈Λ

Lλ =⇒
⊕
λ∈Λ

Mλ. Then f is normal (resp. k-normal, i-normal) if

and only if fλ is normal (resp. k-normal,i-normal) for every λ ∈ Λ.

(2) A morphism ϕ : L −→M of left S-semimodules is normal (resp. k-
normal, i-normal)if and only if idF ⊗S ϕ : F ⊗SL −→ ⊗SM is normal
(resp. k-normal,i-normal) for every non-zero free right S-semimodule
F.

(3)If PS is projective and ϕ : L −→ M is a normal (resp. k-normal,
i-normal)morphism of left S-semimodules, then idF ⊗S ϕ : P ⊗S L −→
P ⊗S M is normal(resp. k-normal, i-normal).

Definition 2.2.2. [1] Let X, Y and Z be a left S-semimodules, then
the following sequence of left S-semimodules

X
β−→ Y

φ−→ Z (6)

is exact if φ is k-normal and β(Y ) = Ker(φ).

Definition 2.2.3. Let X, Y and Z be a left S-semimodules, then the
following sequence of left S-semimodules

X
β−→ Y

φ−→ Z
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is called :

• Proper-exact if β(X) = Ker(φ).

• Semi-exact if β(X) = Ker(φ).

• Quasi-exact if β(X) = Ker(φ) and φ is k-normal .

Definition 2.2.4. A (possibly infinite) sequence of S-semimodules

. . .→Mi−1
fi−1−−→Mi

fi−→Mi+1
fi+1−−→Mi+2 → . . . (7)

• Chain complex if fj+1 ◦ fj = 0 for every j .

• Exact (resp., proper-exact, semi-exact, quasi-exact) if each partial

sequence with three terms Mj
fj−→ Mj+1

fj+1−−→ Mj+2 is exact (resp.,
proper-exact, semi-exact, quasi-exact).

Remark 2.2.1. Note that In (6), the inclusion β(X) ⊆ Ker(φ)
forces β(X) ⊆ β(X) ⊆ Ker(φ), whence the assumption β(X) =
Ker(φ) so we have that β(X) = β(X),i.e. φ is i-normal. So, the
definition puts conditions on h and f that are dual to each other (in
some sense).

Lemma 2.2.3. Suppose that X, Y and Z are S-semimodules, then:

(1) 0 −→ X
β−→ Y is exact sequence if and only if β is injective.

(2) Y
φ−→ Z −→ 0 is exact sequence if and only if φ is surjective.

(3) 0 −→ X
β−→ Y

φ−→ Z is semi-exact sequence and φ is normal if
and only if X ' Ker(φ).
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(4) 0 −→ X
β−→ Y

φ−→ Z is exact sequence if and only if X ' Ker(φ)
and φ is k-normal.

(5) X
β−→ Y

φ−→ Z −→ 0 is semi-exact sequence and φ is normal if
and only if Z ' Y/β(X).

(6) X
β−→ Y

φ−→ Z −→ 0 is exact sequence if and only if Z ' Y/φ(X)
and β is i-normal.

(7) 0 −→ X
β−→ Y

φ−→ Z −→ 0 is exact sequence if and only if
X ' Ker(β) and Z ' Y/X

Corollary 2.2.1. The following are equivalent :

(1) 0 −→ K
h−→ L

f−→M −→ 0 is an exact sequence of S-semimodules.

(2) K ' Ker(f) and M ' L/K.

(3) h is injective, h(K) ' Ker(f), g is surjective and (k-)normal.

In this case We have that f,g are normal morphism.

Remark 2.2.2. Let A,B are left S-semimodules, then A morphism
of semimodules α : A −→ B is an isomorphism if and only if

0 −→ A
α−→ B −→ 0

is exact if and only if α is a normal bimorphism (α is both normal
monomorphism and normal epimorphism).

Now the hypothesis about α that it is normal is necessary. For exam-
ple, Let q : Z+ −→ Z, where q is bimorphism of commutative monoids
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(Z+-semimodules), but q is not isomorphism (note that q is not i-
normal, in fact q(Z+) = Z).

Remark 2.2.3. (1)An S-homomorphism is called a monomorphism
if and only if it is injective.
(2)Every surjective S-homomorphism is an epimorphism, but the con-
verse is not always true.

The following example shows that not every epimorphism is surjec-
tive.

Example 2.2.1. Let q : Z+ −→ Z is a monoid epimorphism as (f ◦
q)(1Z+) = (g ◦ q)(1Z+) implies f(1Z) = g(1Z) and f = g for every
monoid morphisms f, g : Z → M . However, it is clear that q is not
surjective.

2.3 Adjoint Pairs of Functors

Definition 2.3.1. An S-homomorphism h : M → N is called a
equalizer of f, g : N → L if f ◦ h = g ◦ h and whenever an S-
homomorphism h′ : M ′ → N satisfies f ◦ h′ = g ◦ h′, there exists a
unique S-homomorphism ϕ : M ′ →M such that h ◦ ϕ = h′
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M N L

M ′

f

g

h

h′
∃!ϕ

Definition 2.3.2. An S-homomorphism h : M → N is called a co-
equalizer of f, g : L → M if h ◦ f = h ◦ g and whenever an S-
homomorphism h′ : M → N ′ satisfies h′ ◦ f = h′ ◦ g, there exists a
unique S-homomorphism ϕ : N → N ′ such that ϕ ◦ h = h′

L M N

N ′

f

g

h

h′
∃!ϕ

Definition 2.3.3. Let φ : X → Y be an S-homomorphism. Ker(φ) :=
{x ∈ X | φ(x) = 0}. The map ker(φ) : Ker(φ) → X is the equal-
izer of φ and the zero map. Coker(φ) := Y \ φ(X). The map
coker(φ) : Y → Coker(φ) is the co-equalizer of φ and the zero map.

Proposition 2.3.1. [8]Let A,B be an arbitrary categories and A C−→
B D−→ A be functors such that (C,D) is an adjoint pair, then:

(1) C preserves all colimits which turn out to exist in A.

(2) D preserves all limits which turn out to exist in B.
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Corollary 2.3.1. Suppose that S,R are semirings and RFS a (R, S)−
bisemimodule.

(1) F ⊗S − : SSM→ RSM preserves all colimits.

(a) Let the set {Aλ}Λ be an arbitrary family of left S-semimodules,
then we have a canonical isomorphism of left R-semimodules

F ⊗S
⊕
λ∈Λ

Aλ '
⊕
λ∈Λ

(F ⊗S Aλ).

(b) Let the set (Aj, {hjj′})J be an arbitrary directed system of left S-
semimodules, then we have an isomorphism of left R-semimodules

F ⊗S lim
−→
Aj ' lim

−→
(F ⊗S Aj)

(c) F ⊗S − preserves coequalizers.

(d) F ⊗S − preserves cokernels.

(2) HomT (F,−) : TSM→ SSM preserves all limits.

(a) Let the set {Bλ}λ∈Λ be an arbitrary family of left R-semimodules,
then we have a canonical isomorphism of left S-semimodules

HomR(F,
∏
λ∈Λ

Bλ) '
∏
λ∈Λ

HomR(F,Bλ).

(b) Let the set (Aj, {hjj′})J be an arbitrary inverse system of left R-
semimodules, then we have an isomorphism of left S-semimodules

HomR(F, lim
←−
Aj) ' lim

←−
HomR(F,Aj).

(c) HomR(F,−) preserves equalizers.

(d) HomR(F,−) preserves kernels.
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(3) HomR(−, F ) : RSM→ SMS preserves all limits.

(a) Let the set {Bλ}Λ be an arbitrary family of left T-semimodules,
then we have a canonical isomorphism of right S-semimodules

HomR(
⊕
λ∈Λ

Bλ, F ) '
∏
λ∈Λ

HomR(Bλ, F ).

(b) Let the set (Aj, {hjj′})J be an arbitrary directed system of left T-
semimodules , then we have an isomorphism of right S-semimodules

HomR(lim
−→
Aj, F ) ' lim

←−
HomR(Aj, F ).

(c) HomR(−, F ) converts coequalizers into equalizers.

(d) HomR(−, F ) converts cokernels into kernels.

Proposition 2.3.2. Let R, S are semirings, and RAS is (R, S) −
bisemimodule and consider the functor HomR(A,−) : RSM −→
SSM. Let

0 −→ K
h−→ L

f−→M (8)

be a sequence of left R-semimodules and consider the following se-
quence of left S-semimodules

0 −→ HomR(A,K)
(A,h)−−−→ HomR(A,L)

(A,f)−−−→ HomR(A,M). (9)

(1) Now if the sequence 0 −→ K
h−→ L is exact and h is normal, then

0 −→ HomR(A,K)
(A,h)−−−→ HomR(A,L)

is exact and (A, h) is normal.

(2) If the sequence (8) is semi-exact sequence and h is normal, then the
sequence (9) is semi-exact sequence(proper exact sequence) and (A, h)
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is normal.

(3) If the sequence (8) is exact sequence and HomR(A,−) preserves
k-normal morphisms, then the sequence (9) is exact.

Proof. (1) Suppose that the sequence 0 −→ K
h−→ L is exact implies

that h is injective, implies that (A, h) is injective, which implies that

0 −→ HomR(A,K)
(A,h)−−−→ HomR(A,L) is exact. Now suppose that h is

normal and take the following short exact sequence of S-semimodules:

0 −→ K
h−→ L

πL−→ L/K −→ 0.

Now we have thatK = Ker(πK)(by Lemma 2.2.3). NowBy Corollary 2.3.1
we have thatHomT (G,−) preserves kernels and so (A, h) = ker(A, πK)
whence normal.

(2) By applying Lemma 2.2.3(3), we have that The semi-exactness
of the sequence (10) and the normality of h are equivalent to K '
Ker(f). Now since HomT (G,−) is preserves kernels, we can deduce
that HomR(A,K) = Ker((A, f)) is equivalent to the semi-exactness
of the sequence (9) and the normality of (A, g). Now note that

(A, h)(HomR(A,K)) = (A, h)(HomR(A,K)) = Ker(A, f),

that means that the sequence (9) is proper exact sequence(whence semi-
exact sequence).
(3) This directly follow from ”2” and the hypothesis on HomT (−, G).

�

Proposition 2.3.3. Let R,S be as a semirings, and RAS be a (R,S)-
bisemimodule and take the functor A⊗S − : SSM −→ RSM. Let

X
h−→ Y

φ−→ Z −→ 0 (10)
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be a sequence of left S-semimodules and take the sequence of left R-
semimodules

A⊗S X
A⊗h−−→ A⊗S Y

A⊗φ−−→ A⊗S Z → 0 (11)

(1) If the sequence Y
φ−→ Z → 0 is exact sequence and φ is normal,

then the sequence A ⊗S Y
A⊗φ−−→ A ⊗S Z → 0 is exact sequence and

A⊗ φ is normal.

(2) If the sequence (10) is semi-exact sequence and φ is normal, then
the sequence (11) is semi-exact sequence and A⊗ φ is normal.

(3) If the sequence (10) is exact sequence and A ⊗ S−preserves i-
normal morphisms, then the sequence (11) is exact sequence.

Proof. Now The following implications are obvious: Y
φ−→ Z → 0 is

exact sequence ⇒ φ is surjective ⇒ A ⊗ φ is surjective ⇒ A ⊗S
Y

A⊗φ−−→ A⊗S Z −→ 0 is exact.

(1) Now suppose that φ is normal and assume the exact sequence
of S − semimodules

0 −→ Ker(φ)
i−→ Y

h−→ Z −→ 0.

Then Z ' Coker(i). Now By Corollary 2.3.1(1), A ⊗ S− preserves
cokernels and so A⊗ φ = coker(A⊗ i) whence normal.

(2)Apply Lemma 2.2.3: The assumptions on (10) are equivalent to
Z = Coker(φ). Since G ⊗ S− preserves cokernels, we conclude that
G⊗SZ = Coker(G⊗φ), i.e. (11) is semi−exact and G⊗φ is normal.

(3) This follows directly form (2) and the hypothesis on G⊗ S−. �
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Lemma 2.3.4. Let R,S be a semirings RAS be a (R, S)−bisemimodule
and consider that the functor HomR(−, A) : RSM −→ SMS. Suppose
that

K
h−→ L

f−→M −→ 0 (12)

is a sequence of left R-semimodules, and assume that the following
sequence is a sequence of right S-semimodules

0 −→ HomR(M,A)
(f,A)−−−→ HomR(L,A)

(h,A)−−−→ HomR(K,A). (13)

(1) If the sequence L
f−→ M −→ 0 is exact sequence and f is normal

morphism, then the sequence 0 −→ HomR(M,A)
(f,A)−−−→ HomR(L,A)

is exact sequence and (f, A) is normal morphism.
(2) if the sequence (12) is semi-exact sequence and f is normal mor-
phism, then the sequence (13) is semi-exact (proper-exact)sequence and
(f, A) is normal morphism.
(3) If the sequence (12) is exact sequence and HomR(−, A) converts i-
normal morphisms into k-normal ones, then the sequence (13) is exact
sequence.

Proof. (1) Note that The following are clear: let L
f−→ M −→ 0 is

exact sequence, implies that f is surjective, implies that (f, A) is in-

jective, implies that 0 −→ HomR(M,A)
(f,A)−−−→ HomR(L,A) is exact

sequence. Suppose that f is normal morphism and assume that the
exact sequence of S-semimodules

0 −→ Ker(f)
i−→ L

f−→ L −→ 0.

Now note that M ' Coker(i). Now By Corollary 2.3.1, HomR(−, A)
converts co-kernels into kernels, now we conclude that (f, A) = ker((h,A))
whence normal.
(2) Now Apply Lemma 2.2.3(5):K

h−→ L
f−→M −→ 0 is semi-exact se-

quence and f is normal morphism, implies that M ' Coker(h). Now
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because of that the contravariant functor HomR(−, A) converts coker-
nels into kernels, it follows that HomR(M,A) = Ker((h,A)) which is
in turn equivalent to (13) being semi-exact sequence and (f, A) being
normal. Notice that

(f, A)(HomS(M,A)) = (f, A)(HomS(M,A)) = Ker((h,A)),

i.e. (13) is proper-exact sequence(whence semi-exact sequence).
(3) This follows directly from (2) and the hypothesis on HomR(−, A).

�
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Chapter 3

Projective, Inejective and Flat
Semimodules

During this section, (S,+, 0, ·, 1) is a semiring.

3.1 Projective Semimodules

There are many notations of projective semimodules in the previous
study, but in this Chapter, we study the some properties of projective
semimodules and relate them with pricipal left ideals, and study some
properties of projective semimodules, as well as special type of projec-
tive semimodules such that e-projective semimodules which appeared
first in [3].

Definition 3.1.1. Let B, M, and N are left S-semimodules, then
B is projective if and only if satisfies the following condition: if
ϕ : N → M is a surjective S-homomorphism and if β : B → M is an
S-homomorphism, then there exists an S-homomorphism γ : B → N
such that ϕ ◦ γ = β.
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Definition 3.1.2. Suppose that B is a left S-semimodule, then B is
called
(1)N-projective [13] if for any surjective S-homomorphism h : N →
M , and f is an S-homomorphism f : B → M , there exists an S-
homomorphism g : B → N such that h ◦ g = f ,

N M

B

0
h

∃g
f

(2) N − k-projective[9] if for any normal epimorphism h : N →
M and any S-homomorphism f : B → M , then there exists an S-
homomorphism g : B → N such that h ◦ g = f .

N M

B

0
h(normal)

∃g
f

(3) Normally N -projective[4] if for any normal epimorphism h :
N → M and any S-homomorphism f : B → M , then there exists an
S-homomorphism g : B → N such that h ◦ g = f and whenever an
S-homomorphism h′ : B → N such that h ◦ g = f, then there exists
S-homomorphisms h1, h2 : B → N such that f ◦ h1 = 0 = f ◦ h2 and
h+ h1 = h′ + h2.
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B N M 0

B

h2

h1

h(normal)

f
∃g

h′

Now B is called that (resp., k-projective, normally projective)
if B is (resp.,N-k-projective, normally N-projective) for every left S-
semimodule N .

Proposition 3.1.1. Every free left S-semimodule is projective.

Proof. Suppose M , N are left S-semimodules, and B is a free left S-
semimodule with its basis C. Now let ϕ : N → M be a surjective
S-homomorphism, and let β : B → M be an S − homomorphism.
Now since ϕ is surjective, then for each element b of B there exists an
element nb of N such that ϕ(nb) = β(b). Now By proposition 2.1.4,
there exists a unique S-homomorphism γ : B → N such that γ(b) =
nb. Then β ◦ γ(b) = β(nb) = β(b) for any b belongs in B and so, by
the uniqueness part of proposition.2.1.4, we must have β = β ◦ γ. �

Definition 3.1.3. Let K, L be left S-semimodules, then K is called a
retract of L if and only if there exist a surjective S-homomorphism
β : L→ K and an S-homomorphism γ : K → L such that β ◦γ = idK .

Remark 3.1.1. Let K, L be left S-semimodules, if K is a direct
summand of L, then K is a retract of L. Morover, if K is a retract of
L and L is a retract of L′, then K is directly a retract of L′.

Proposition 3.1.2. A left S-semimodule is projective S-semimodule
if and only if it is a retract of a free left S-semimodule.
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Proof. (=⇒) Suppose that B is a projective left S-semimodule, then
we note that by proposition 2.1.3, there exists a free S-semimodule A
and a surjective S−homomorphism β : A⇒ B. Now because of that
B is projective, there exists an S-homomorphism α : B → A satisfies
the following: β ◦ α is the identity map on B.

(⇐=) Suppose that B is a retract of a free left S-semimodule A
and let β : A→ B and α : B → A be S − homomorphisms such that
β is surjective and β ◦ α is the identity map on B. Let L, M are left
S-semimodule, and ϕ : L→ M be a surjective S − homomorphism,
and let ψ : B → M be an S − homomorphism. Now since that A is
projective (by proposition 3.1.1), there exists an S−homomorphism
η : A → L such that ϕ ◦ η = ψ ◦ β. So ϕ ◦ η ◦ α = ψ ◦ β ◦ α = ψ,
and so 1η ◦ α : B → L is a map having the property to show the
projecivity. �

Corollary 3.1.1. Let A be Any retract of a projective left S-semimodule
B, then A is projective.

Proposition 3.1.3. Suppose that the set {Bi}i∈I be an arbitrary fam-
ily of S-semimodules. Then the direct sum B =

⊕
i∈I
Bi is projective if

and only if each Bi is projective.

Proof. (=⇒) If B is projective, then each Bi is a retract of B and
hence is projective by Corollary 3.1.1
(⇐=)Let f : A → L be an surjective S − homomorphism of S-
semimodules. Let g : B → L be a S − homomorphism. Let πi :
B → Bi be the canonical projection and qi : Bi → B be the canonical
injection. Define gi : Bi → L such that gi = g ◦ qi for each i ∈ I. Since
Bi is projective, there exists an S-homomorphism hi : Bi → A such
that f ◦ hi = gi for each i ∈ I. Define h : B → A by h =

∑
i∈I
hi ◦ πi.

33



Then

f◦h = f(
∑
i∈I

hi◦πi) =
∑
i∈I

f◦hi◦πi =
∑
i∈I

gi◦πi =
∑
i∈I

g◦qi◦πi = g
∑
i∈I

qi◦πi = g

So B is projective.
�

Definition 3.1.4. Let X, Y be Left S-semimodules and let φ : X −→
Y, be a surjective S-homomorphism, then φ is called coessential if
and only if for every surjective S-homomorphism γ : Z −→ A such
that φ ◦ γ is surjective.

Definition 3.1.5. Let X be left S-semimodule and B is projective S-
semimodule. If γ : B −→ X is coessential S-homomorphism, then B
is called projective cover of X.

Remark 3.1.2. If S is an additivity idempotent semiring. If every
left S-semimodule of S has projective cover, then S will be equal {0}.

Proof. By contradiction, suppose that S 6= {0}, and B ≤ SN, where
B is generated by {ai, for i ∈ N}, such that the kth component aki of
ai is equal 0 where k < i, and otherwise aki = 1.

Definition 3.1.6. [7]Let S be a semiring, then it is called a right PP-
semiring if and only if each principal right ideal of S is projective.

Definition 3.1.7. [7]Let s belongs to S, then it is called right e-
cancellative if and only if there exists an element e belongs in S
such that se = s holds and sz = sb implies ez = eb for any z, b belongs
in S.
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Note from the above definition that e is a multiplicative idempotent
element of S, since s.e = s.1 =⇒ e.e = e.1 = e.

Proposition 3.1.4. [7] Let A be an arbitrary right ideal of a semiring
S generated by element e where e is a multiplicative idempotent element
of S, then A is projective.

Proof. Since Se is a retract of the right S-semimodule SS, but SS is
free, so A is projective.

�

Proposition 3.1.5. [7]Let BS be cyclic right S-semimodule, then it is
projective if and only if B ∼= aS, where a is a multiplicative idempotent
in S.

Proof. (=⇒) Assume thatBS is a cyclic projective right S-semimodule,
then B = bS is satisfied for some b ∈ B. Now let h : S → B = bS

be S − epimorphism defined by h(1) = b. Since B is projective,
then there exists an S − homomorphism f : B → S satisfies the
following: h ◦ f = ib. Now put f(b) = a ∈ S. Then we have that
b = h ◦ f(b) = h(a) = h(1.a) = h(1).a = ba. Now b = ba im-
plies that f(b) = f(ba) = f(b)a, implies that a = a.a proves that
a is a multiplicative idempotent of S. Moreover, f(b) = a implies
that f is an S − epimorphism of B = bS onto aS ⊆ S defined by
f(by) = f(b)y = ay for all y belongs to S. We show that this map-
ping is also injective and hence an S − isomorphism which implies
B = bS ∼= aS. Now for any s1, s2 belongs to S, by as1 = as2 in S
it follows that b(as1) = b(as2), implies that (ba)s1 = (ba)s2, implies
that bs1 = bs2 in B. (Note that as1 = as2 and bs1 = bs2 are in fact
equivalent because of bs1 = bs2 yields in turn f(bs1) = f(bs2) and thus
as1 = as2). (⇐=) If B ∼= aS is satisfies for a multiplicative idempotent
a ∈ S,then by proposition 3.1.4 we conclude that aS is projective and
hence also B.

�
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Corollary 3.1.2.[7] Let S be a semiring, and b ∈ S, then a principal
right ideal bS is a projective right S-semimodule if and only if b is e-
cancellative for some e ∈ S.

Corollary 3.1.3.[7] A semiring S is right PP-semiring if for each
principal right ideal of S is generated by a left e-cancellative element
for some e ∈ S.

Proposition 3.1.6. [21] Let K be a right S-semimodule and h ∈
EndS(K). If h(K) is projective, then h is left gh− cancellative where
g : h(K)→ K is a monomorphism.

Proof. As h : K → h(K) is an epimorphism and h(K) is projective,
so there exists an S − homomorphism g : h(M) → K such that
h ◦ g = ih(K) Thus we have h ◦ (g ◦ h) = (h ◦ g) ◦ h = ih(k) ◦ h = h.
Now let h ◦ fl = h ◦ f2 for some f1, f2 ∈ ES(K). then (g ◦ h) ◦ fl =
g ◦ (h ◦ f1) = g ◦ (h ◦ f2) = (g ◦ h)f2 Thus h is left gh− cancellative.

�

Theorem 3.1.7. [7] A semiring S is a right PP -semiring if and only
if EndS(B) is a right PP-semiring for any cyclic projective right S-
semimodule BS.

Proof. (=⇒) Let S be a PP − semiring, BS = bS, where b belongs
to B a cyclic projective S-semimodule and h ∈ EndS(B). Now by
proposition 3.1.5 there is an element e of S and an S− isomorphism
g : P = pS → eS ∈ S. Hence g maps the (cyclic) S-subsemimodule
h(B) of B isomorphically onto a principal right ideal of S. Now since
S is PP , the latter is projective and thus also f(B). We conclude by
proposition 3.1.6 that even each element h of the semiring EndS(B)
is left gh-cancellative. Thus, by corollary 3.1.3 that EndS(B) is a
PP -semiring .
(⇐=) Since S = 1.S is a cyclic and projective right S-semimodule,
EndS(SS) is PP by assumption. Now since EndS(SS) and S are
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isomorphic semirings, then S is also right PP .
�

Definition 3.1.8. [3] Let N, K, and L be S-semimodules, then B is
called N-e-projective if and only if the covariant functor

HomS(B,−) : SSM −→ Z+SM

turns any short exact sequence of left S-semimodules

0→ L
f−→ N

g−→→ 0

into a short exact sequence of commutative monoids

0 −→ HomS(B,K)
(B,h)−−−→ HomS(B,N)

(B,f)−−−→ HomS(B,L) −→ 0.

B is called e-projective if B is N-e-projective for any left S-semimodule
N.

Remark 3.1.3. Every projective and e-projective semimodules are
k-projective.

Proposition 3.1.8. Let B be a left S-semimodule.

• SB Is N-e-projective (for some left S-semimodule N) if and only if SB
is normally N-projective.

• SB Is e-projective if and only if SB is normally projective.

Proof. We need to show the first part only:
(=⇒) Assume that SB is N-e-projective. Let h : N → K be a
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normal epimorphism and f : B → K an S-homomorphism. Now
by lemma 2.2.3 the following sequence is a short exact sequence

0 −→ Ker(h)
i−→ N

h−→ K −→ 0

where the map i is the injection map. Now we have By assumption,
the following sequence of commutative monoids is exact:

0 −→ HomS(B,Ker(h))
(B,i)−−→ HomS(B,N)

(B,f)−−−→ HomS(B,K) −→ 0

In particular we note that (B, f) is surjective and k−normal, whence
B is N-projective.
(⇐=) Let A, N and K be left S-semimodules, and let the sequence

0 −→ A
h−→ N

f−→ K −→ 0 be a short exact sequence and consider the
induces sequences of commutative monoids

0 −→ HomS(B,A)
(B,h)−−−→ HomS(B,N)

(B,f)−−−→ HomS(B,K) −→ 0.

By proposition 2.3.2 (B, h) we conclude that it is a normal monomor-
phism and Im((B, h)) = Ker((B, f)). Note that by assumption,
(B, f) is a normal epimorphism, where the induced sequence of com-
mutative monoids is exact.

�

Proposition 3.1.9. Every projective left S-semimodule is e-projective.

Proof. Let N , K be left S-semimodules, and SB be projective. Sup-

pose thatN
f−→ K −→ 0 a normal epimorphism, and β ∈ HomS(B,K).

Now since SB is N − projective,

HomS(B,N)
(B,f)−−−→ HomS(B,K) −→ 0

is surjective, i.e. there exists γ ∈ HomS(B,N) such that f ◦ γ = β.
Now By proposition 3.1.8, we note that it is enough to show that
(B, f) is k − normal.
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Suppose that (B, f)(γ) = (B, f)(γ′) for some γ, γ′ ∈ HomS(B,N), i.e. f◦
γ = f ◦ γ′. Since SB is projective, B is a retract of a free left
S-semimodule, i.e. There exists an index set Λ and a surjective S-
homomorphism η : S(Λ) −→ B as well as an injective S-homomorphism
φ : B −→ S(Λ) such that η ◦φ = idB. Note that f ◦γ ◦η = f ◦γ′ ◦η for
any λ ∈ Λ, since f is k − normal, then there exist nλ, n

′
λ ∈ Ker(f)

such that (γ ◦ η)(λ) +nλ = (γ′ ◦ η)(λ) +n′λ, let ψ, ψ′ ∈ HomS(S(Λ), N)
be the unique S-homomorphisms with ψ(λ) = nλ and ψ

′(λ) = n′λ, for
any λ ∈ Λ (they exist and are unique since Λ is a basis for S(Λ)). We
have

f ◦ (ψ ◦ φ) = (f ◦ ψ) ◦ φ = 0 = (f ◦ ψ′) ◦ φ = f ◦ (ψ′ ◦ φ),

i.e. ψ ◦φ, ψ′ ◦φ ∈ Ker((B, f)). Moreover, for any λ ∈ Λ we have that

(γ ◦ η + ψ)(λ) = (γ ◦ η)(λ) + nλ = (γ′ ◦ η)(λ) + n′λ = (γ′ ◦ η + ψ′)(λ),

whence γ ◦ η + ψ = γ′ ◦ θ + ψ′. It follows that

γ + ψ ◦ φ = γ ◦ idB + ψ ◦ φ = γ ◦ (η ◦ γ) + φ ◦ φ

= (γ ◦ η + ψ) ◦ φ = (γ′ ◦ η + ψ′) ◦ φ
= γ′ ◦ (η ◦ ψ) + ψ′ ◦ φ = γ′ ◦ idB + ψ′ ◦ φ

= γ′ + ψ′ ◦ φ.
�

The following example show that the converse of proposition 3.1.9
is not true.

Example 3.1.1. Let Q+ be a semiring, where it is the set of non-
negative rational numbers, with normal addition and multiplication.
Consider that the Boolean algebra B as a left S-semimodule (with
s · 1 = 1) if and only if s belongs to S \ {0}, then we have SB is
S-e-projective but not an S-projective S-semimodule.
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Proof. Consider the S-homomorphism

h : S → B, s 7→ {1 if s 6= 0, 0 if s = 0}

Note that h is not k−normal : Ker(h) = {0}, h(1) = 1 = h(2), and 1+
0 6= 2 + 0. Since there is no surjective S-homomorphism from B to S,
so there is no isomorphism from B to S. Now because of that S is an
ideal−simple S-semimodules, and by Lemma 2.1.2., thenHomS(B, S) =
{0}. Note that the following diagram cannot be commutative:

S B

B

f

0
idB

we conclude B is not S − projective. Suppose that K is an S −
semimodule and h : S → K is a normal S-epimorphism. If h = 0,
then K = h(S) = 0, which implies that for any S-homomorphism
β : B → K is the zero morphism and by choosing S-homomorphism
0 = φ : B→ S, then h = φ ◦ β. If h 6= 0, then h(1) 6= 0. Now for any
a ∈ S \ 0, we have 0 6= h(1) = h(a−1a) = a−1h(a), whence h(a) 6= 0.
Thus Ker(h) = {0}. If h(a) = h(b), then a + c1 = b + c2 for some
c1, c2 ∈ Ker(h) = {0},thus a = b. Hence, h is an S-homomorphism
and K is S-isomorphic to S. Now since S is not S-isomorphic to B,
then K is not S-isomorphic to B. Since S is ideal-simple, K is ideal-
simple. So HomS(B, K) = {0} and B is S-e-projective.

�

Definition 3.1.9. Let K, L and A be S-semimodules, then the follow-
ing sequence

0→ K
h−→ L

φ−→ A→ 0 (14)

is
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• Left splitting if there exists h′ ∈ HomS(L,K) such that h′ ◦ h = idK .

• Right splitting if there exists φ′ ∈ HomS(A,L) such that φ ◦ φ′ = idA.

The sequence (14) splits or is splitting if it is both (left and right
splitting) .

Remark 3.1.4. A short exact sequence of modules over a ring is
left splitting if and only if it is right splitting. However, this is not the
case for semimodules over arbitrary semiring (the following example
show that).

Example 3.1.2. Consider The following sequence:

0 −→ {0, 2} i−→ B(3, 1)
π−→ Z2 −→ 0, (15)

is a short exact sequence of commutative monoids, where i is the injec-
tion map and π is the projection map. Now since {0, 2} is subtractive
and B(3, 1)/{0, 2} ∼= Z+Z2 (see lemma 2.2.3), we conclude that (15)
is exact sequence. Now Consider the following:

φ : B(3, 1) −→ {0, 2}, x 7→ { 2 if x 6= 0, 0 if x = 0}

and note that φ ◦ i = id{0,2}, hence (15) is left splitting semimodule.
But, we have HomZ+(Z2, B(3, 1)) = {0} since 1 has an additive in-
verse (namely 1) in Z2, while no non-zero element of B(3, 1) has an
additive inverse. So, the sequence (15) is not right splitting.

Proposition 3.1.10. Let K, E and SB be left S-semimodules, then

SB is k-projective if and only if every short exact sequence

0→ K
φ−→ E

α−→ B → 0

is right-splitting.

41



Proof. (=⇒) Let B be k − projective and 0 → Z
φ−→ G

α−→ B → 0 be
a short exact sequence. In particular α is surjective and k−normal.
Consider idB : B −→ B. Since SB is k− projective, then there exists
an S-homomorphism α′ : B → G such that the following diagram

B

BG

idB
∃α′

α

is commutative, i.e.α ◦ α′ = idB.
(⇐=) Let G

α−→ V → 0 be a normal surjective S-homomorphism
and γ : B → V be a morphism of left S-semimodules. Consider the
pullback of g and h:

D = {(b, g) ∈ B ×G | γ(b) = α(g)}

and the following diagram is commutative:

D B

G V

πB

γπG

α

where πB and πD are the projection maps. Since α is surjective,
γ(b) = α(g) for some g ∈ G, i.e. (b, g) ∈ D and indeed, b = πB(b, g).
So, πB is surjective. Let (p, g), (b, g′) ∈ D so, πB(b, g) = πB(b, g′).
Then, α(g) = γ(b) = α(g′) and there exist k, k′ ∈ Ker(α) such that
g + k = g′ + k′ (since α is k-normal). Note (0, k), (0, k′) ∈ Ker(πB)
and (b, g) + (0, k) = (b, g + k) = (b, g′ + k′) = (b, g) + (0 + k′), i.e. πB
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is k − normal. Hence the sequence

0→ Ker(πB) ↪→ D
πB−→ B → 0

is exact, and by our hypothesis there exists an S-homomorphism ψ :
B → D such that πB ◦ψ = idP . Note for any b ∈ B,ψ(b) ∈ D whence
ψ(b) = (b, g) for some g belongs to G with γ(b) = α(g). It follows that

(α ◦ (πG ◦ ψ))(b) = α(πG(b, g)) = α(g) = γ(b). (16)

So, α ◦ (πG ◦ ψ) = γ. So, B is k-projective.
�

Lemma 3.1.11. Let N be a left S-semimodule such that every subtrac-
tive subsemimodule is a direct summand, then every left S-semimodule
is N-e-projective.

Proof. Suppose that B is a left S-semimodule and let

φ : N −→ A −→ 0

be a normal epimorphism and α : B → A be an S-homomorphism.
Note Ker(φ) ≤ N is a subtractive subsemimodule, whence N =
Ker(φ) ⊕ Y , where Y ≤ N . The row of this following diagram is
exact

0 ker(φ) N A 0

B

i φ

α

by lemma 2.2.3 and it follows (see also remarks 2.1.4) that isomor-
phisms of left S-semimodules:

A ' N/Ker(φ) ' Y.
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Consider the following isomorphism A
α′' Y and setting γ := iY ◦α′◦α :

B −→ N where φ ◦ iY = idY and iY ◦ φ |Y = idA, φ ◦ γ = α.
Assume that also γ′ : B −→ N such that φ ◦ gamma′ = α. Consider
the projection
β : N −→ Ker(phi). Then

η : N −→ N, n 7→ iY ◦ α′ ◦ φ+ β

is the identity map. Let n ∈ N , and write n = a+y for some unique
a belong to Ker(f) and y belongs in Y , and note

η(n) = η(a+y) = (iY ◦α′◦φ+β)(a+y)+(iY ◦α′◦φ)(a+y)+β(a+y) = y+a = n.

Choose γ1 := β ◦ γ′ : B −→ N and γ2 = 0 : B −→ N . Note that
φ ◦ γ1 = φ ◦ β ◦ γ′ = 0 = φ ◦ γ2. Moreover, we have for each b ∈ B:

(γ + γ1)(b) = γ(b) + γ1(b) = (iY ◦ α′ ◦ α)(b) + (β ◦ γ′)(b)

= (iY ◦ α′ ◦ φ ◦ γ′)(b) + β ◦ γ′(b) = ((iY ◦ α′ ◦ φ+ b) ◦ γ′)(b)
= γ′(b) = (γ′ + 0)(b).

Therefore, B is N − e− projective.
�

Lemma 3.1.12. [3]

• Let N be a left S-semimodule, then a retract of an N-e-projective semi-
module is N-e-projective.

• A retract of an e-projective left S-semimodule is e-projective.

Proof. We need to prove only the fist part: Let N and B be left S-
semimodules, which B is N − e − projective and let SA be a retract
of B along with a surjective S-homomorphism φA : B → A and an
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injective S-homomorphism iA : A→ B such that πA ◦ iA = idA.
Let φ : N → C be a normal epimorphism and β : A → C an S-
homomorphism. SinceB is e-projective, there exists an S-homomorphism
θ∗ : B → N such that φ ◦ θ∗ = β ◦ πA. Consider θ := θ∗ ◦ iA : A→ A.

N C

A

B

0

A

φ

β

πAiA
∃θ∗

Then φ ◦ θ = φ ◦ (θ∗ ◦ iA) = β ◦ πA ◦ iA = β ◦ idA = β.
Assume that θ′ : A→ N is an S-homomorphism such that φ ◦ θ′ = β.
Since B is N-e-projective and φ ◦ (θ′ ◦ πA) = (φ ◦ θ′) ◦ πA = β ◦ πA,
there exist S-homomorphisms

θ′1, θ
′
2 : B → N such that φ◦θ′1 = 0 = φ◦θ′2 and θ∗+θ′1 = θ′◦πA+θ′2.

Consider θ1 := θ′1 ◦ iA and θ2 := θ′2 ◦ iA.

A B N C 0

A

B

iA
∃θ′2

∃θ′1

φ

β

πAiA

θ

θ′

θ∗
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Then φ ◦ θ1 = φ ◦ θ′1 ◦ iA = 0, φ ◦ θ2 = φ ◦ θ′2 ◦ iA = 0, and

θ + θ1 = θ∗ ◦ iA + θ′1 ◦ iA = (θ∗ + θ′1) ◦ iA
= (θ′ ◦ πA + θ′2) ◦ iA = θ′ ◦ πA ◦ iA + θ′2 ◦ iA

= θ′ + θ2.

Consequently, A is N -e-projective.

�

Proposition 3.1.13. Let the set {Bi}i∈I be a family of left S-semimodules,
where I is the index set and N a left S-semimodule, then

⊕
i∈I
Bi is N-e-

projective if and only if Bi is N-e-projective for any i ∈ I. The class
of e-projective left S-semimodules is closed under direct sums.

Proof. (=⇒) Let
⊕
i∈I
Bi is N -e-projective S-semimodule, and note it it

is retract to each {Bi}, for each i ∈ I, and so we have {Bi} is N −
e− projective S − semimodule for each i ∈ I (by Lemma 3.1.12) .
(⇐=) Let β : N → A be a normal epimorphism and φ :

⊕
i∈I
Bi → A be

an S-homomorphism. For any k ∈ I, there exist an S-homomorphism
γk : Bk → N such that φ ◦ ik = β ◦ γk, where ik : Bk −→

⊕
i∈I
Bi is the

canonical injection.

N A 0

⊕
i∈I
Bi

Bk

β

φ

ik

∃γ

∃γk
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By the Universal Property of Direct Coproducts, there exists a unique
S-homomorphism γ :

⊕
i∈I
Bi → N such that γ ◦ ik = γk for any k ∈ I,

i.e.
γ :
⊕
i∈I

Bi → N,
∑
i∈I

bi 7→
∑
i∈I

γi(bi).

Note γ is well defined function Since the
∑

i∈I Bi is finite (all but
finitely many of the coordinates are zero, and it is S-homomorphism
function. And we have

(β ◦ γ)(
∑
i∈I

bi) = β(
∑
i∈I

γi(bi)) =
∑
i∈I

(β ◦ γi)(bi)

=
∑
i∈I

(φ ◦ ii)(bi) = φ(
∑
i∈I

ii(bi))

= φ(
∑
i∈I

bi).

Now assume that γ′ :
⊕
i∈I
Bi → N is an S-homomorphism such that

β ◦ γ′ = φ, then φ ◦ ik = β ◦ γ′ik for any j ∈ I. Since Bj is e-projective
for any k ∈I, there exist an S-homomorphisms γ̃k, γ̂k : Bj → N such
that β ◦ γ̃k = 0 = β ◦ γ̂k and γk + γ̃k = γ′k + γ̂k.
Since the Universal Property of Direct Co-products, there exists S-
homomorphisms

γ̃, γ̂ :
⊕
i∈I

Bi → N, γ̃(
∑
i∈I

bi) :=
∑
i∈I

γ̃i(bi) and γ̂(
∑
i∈I

bi) =
∑
i∈I

γ̂i(bi)
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B N A 0

⊕
i∈I
Bi

Bk

∃γ̂

∃γ̃

β

φ

ik

γ

γ′

γk

Note that both γ̂, γ̃ are S-homomorphism are well defined, since the
sum

∑
i∈I
bi is finite (all but finitely many of the coordinates are zero).

And we have

(β ◦ γ̃)(
∑
i∈I

bi) = β(
∑
i∈I

γ̃i(bi)) =
∑
i∈I

(β ◦ γ̃i)(bi) = 0

γ̂(
∑
i∈I

bi) = γ(
∑
i∈I

γ̂i(bi)) =
∑
i∈I

(β ◦ γ̂i)(bi) = 0

and

(γ + γ̃)(
∑
i∈I

bi) = γ(
∑
i∈I

bi) + γ̃(
∑
i∈I

bi) =
∑
i∈I

γi(bi) +
∑
i∈I

γ̃i(bi)

=
∑
i∈I

(γi + γ̃i)(bi) =
∑
i∈I

(γ′i + γ̂i)(bi)

= (γ′ + γ̂)(
∑
i∈I

bi).

Hence ⊕
i∈I
Bi is N -e-projective. �

48



Examples

• Let S = M2(R+) = N1 ⊕N2, where

N1 = {
(
a 0
b 0

)
| a, b ∈ R+} and N2 = {

(
0 c
0 d

)
| c, d ∈ R+}

and cosider

L = {
(
u u
v v

)
| u, v ∈ R+}, and B = S/L.

then

0→ N1

iN1−−→ S
πN2−−→ 0

(where i is the ijection map and π is the projection map)
is exact sequence, then B is N1 − e − projective and N2 − e −
projective and it is alsoB is normally N1−projective, and normally N2−
projective (By the part one of proposition 3.1.8).

• Let Q+ be a semiring, where it is the set of non-negative rational
numbers, with normal addition and multiplication. Consider that
the Boolean algebra B as a left S-semimodule (with s ·1 = 1) if
and only if s belongs to S/{0}, then SB is e−projective and it is
also normally projective (By the part two of proposition 3.1.8)
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3.2 Injective Semimodules

During this section, as before (S,+, 0, ·, 1) is a semiring. There are
many notations of injective semimodules in the previous study which
coincide if it were a module over a ring. but in this section, we study
the some properties of injective semimodules and special type of in-
jective semimodules such that N − injective, e− injective, N − e−
injective, normally injective[4] and the relation between them. Was
first used in [3].

Definition 3.2.1. [13] Let S be a semiring. A left S-semimodule I

is called injective if and only if for a left S-semimodule A and a
subsemimodule B(B ≤ A), any S-homomorphism from φ : B −→ I

can be extended to an S-homomorphism β : A −→ I.

Definition 3.2.2. [4] Let N, A be left S-semimodules, then A is called

• N − e-injective if the contra variant functor

HomS(−, A) : SSM −→ Z+SM

turns that any short exact sequence

0 −→ X
φ−→ N

β−→ Y −→ 0, where X and Y are left S−semimodules

into a short exact sequence of commutative monoids

0 −→ HomS(Y, J)→ HomS(N,A)→ HomS(X,A) −→ 0.

• e-injective if A is N − e-injective for any left S-semimodule N.

Definition 3.2.3. Let A and N be a left S-semimodule, then A is
called

• N-injective[13] if for any injective S-homomorphism φ : X → N and
any S-homomorphism β : X → A, then there exists an S-homomorphism
β : N → A such that γ ◦ φ = β
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0 X N

A

β

φ

∃γ

• N-i-injective[9] if for any normal monomorphism φ : X → N and
every S-homomorphism γ : X → A, then there exists an S-homomorphism
γ : N → A such that γ ◦ φ = β:

0 X N

A

β

φ(normal)

∃γ

• Normally N-injective[4] if for any normal monomorphism φ : X −→
N and any S-homomorphism β : X −→ A, then there exists an S-
homomorphism γ : N −→ A such that γ ◦ φ = β, and whenever an
S-homomorphism γ′ : N → A such that γ′ ◦ φ = β, then there exist
S-homomorphisms γ1, γ2 : N → A satisfies that γ1 ◦ φ = 0 = γ2 ◦ φ
and γ + γ1 = γ′ + γ2:

0 X N A

A

∃γ1

∃γ2

φ(normal)

β
∃γ

γ′

Note that A is injective semimodule(resp., i-injective, nor-
mally injective) if A is N -injective (resp., N − i-injective, normally
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N -injective) for any left S-semimodule N.

Proposition 3.2.1. [13]Let S be a semiring such that S is an en-
tire, cancellative, zerosumfree semiring then the only injective left S-
semimodule is {0}.

Proof. Let I be an injective left S-semimodule and let i belong to I,
let fi : S → I is an S-homomorphism defined by s 7→ si. Since
I is injective, then there exists an S − homomorphism gi : SM → I
extending fi. Then i + gi(−1) = gi(1) + gi(−1) = gi(0) = gi(0.0) =
0.gi(0) = 0, and so i has an additive inverse in I. So, I is an S-module.
Let I ′ = I{∞} such that defined as the following:(I{∞} to be the set
I ∪ {∞}, where the addition and scalar multiplication from I have
been extended by setting i′ +∞ = ∞ + i′ = ∞ for any i′ belong is
I{∞}, a.∞ = ∞ for any a ∈ S and 0.∞ = 0A). Then the identity
map on I can be extended to an S-homomorphism g : I ′ −→ I. Now
Set x = g(∞), for any i ∈ I we have i+x = g(i)+g(∞) = g(i+∞) =
g(∞) = x. So we have a contradiction about that x has an additive
inverse any element of I, has an additive inverse unless x = 0. So we
conclude that I = 0. �

Proposition 3.2.2. [13] Let S be a semiring and let I be an injective
left S-semimodule. Then

• IX is an injective left S-semimodule for any nonempty set X.

• Any direct summand of I is injective.

Proof. The proof of The first part: the first thing need to show IX

is a left S-semimodule with operations of scalar multiplication and
addition defined elementwise as the following: if φ, γ ∈ IX and a ∈ S,
then (φ + γ)(x) = φ(x) + γ(x) and (aφ)(x) = aφ(x) for any x ∈ X,
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so IX is a left S-semimodule. If L is an S-subsemimodule of a left
S-semimodule Y (L ≤ Y ) and if η is an S-homomorphism from L to
IX , then for any x ∈ X there exists an S-homomorphism ηx : L → I
defined by ηx(l) = (η(l))(x), where l ∈ L. Since I is injective for every
x ∈ X there exists an S-homomorphism fx : Y → I extending ηx.
Define a function f : Y → IX by (f(y))(x) = fx(y) for any y ∈ Y and
for any x ∈ X, then f is an S-homomorphism extending η. So IX is
injective.

The proof of the second part: Let I ′ be a direct summand of I and
let I ′′ be a subsemimodule of I such that I = I ′ ⊕ I ′′, then there
exists a surjective S-homomorphism π : I → I ′, where its kernel
is precisely I ′′. Let β : I ′ → I be the inclusion map. If L is a
subsemimodule of a left S-semimodule Y (L ≤ Y ) and if η : L → I ′

is an S-homomorphism then, since I is injective, there exists an S-
homomorphism f : Y → I extending β ◦ η. In particular, if v ∈ L,

then f(v) ∈ I ′ and so (π◦f)(v) = (π◦β◦η)(v) = η(v), so π◦η : Y → I ′

extends η, proving that I ′ is injective. �

Corollary 3.2.1. If A is a nonempty set the BA is injective as a
left B−semimodule.

Let S, T be semirings, and let φ : S → T be a semiring homo-
morphism. If T is canonically a left S-semimodule, if we define scalar
multplication by s.t = φ(s).t for any s ∈ S and t ∈ T . Now let A be
a left S-semimodule. Then HomS(T,A) is a left T -semimodule with
respect to componentwise addition and scalar multiplication given by
φ(t′) : t→ φ(t.t′) for any φ ∈ HomS(T,A) and t, t′ ∈ T .

Proposition 3.2.3. [13]Let S, T are semirings, and let h : S → T
be a semiring homomorphism. If A is an injective left S-semimodule,
then HomS(T,A) is injective as a left T-semimodule.
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Proof. Suppose that A is an injective left S-semimodule and set L =
HomS(T,A). Let X ′ be a subsemimodule of a left T -semimodule
X(X ′ ≤ X) and let g : X ′ → L be an S-homomorphism. Note
that X is a left S-semimodule with scalar multiplication defined by
s.x = h(s)x for any s ∈ S and x ∈ X. Moreover, X ′ is an S-
subsemimodule of X. suppose that ϕ : X ′ → A is a function defined
by ϕ : x 7→ (g(x))(1), then ϕ is an S-homomorphism, as can easily
be verified. Since A is injective left S-semimodule, there exists an
S-homomorphism λ : X → A extending ϕ. Claim that the function
η : X → L defined by η(x) : r 7→ λ(tx) is an R-homomorphism.
Indeed, for any x1, x2 ∈ X and for any t ∈ T we have

(t)(η(xl + x2)) = λ(t(xl + x2)) = λ(txl + tx2)

= λ(tx1)λ(tt2) = (t)(η(x1)) + (t)(η(x2))

= (t)(η(x1) + η(x2))

and for any x ∈ X and t, t′ ∈ T we have (t)(η(t′x)) = λ(t(t′)) =
λ((tt′)x) = (tt′)η(x) = (t)(t′η(x)). This pooves the claim. Moreover,
η extends f since for every x′ ∈ X ′ and t ∈ T we have that r(η(x)) =
λ(tx) = ϕ(tx) = (1)(g(tx)) = (1)(tg(x)) = (t)(g(x)).

�

Definition 3.2.4. [13] An S-monomorphism α : M → N of left S-
semimodules is essential if and only if for any S-homomorphism β :
N → N ′, the map β ◦ α is an S-monomorphism only when β is an
S-monomorphism.

Definition 3.2.5. Let K be S-semimodule and K ′ be a subsemimodule
of a left S-semimodule K (K ′ ≤ K), then K ′ is large in K if and only
if the inclusion map K ′ → K is an essential S-homomorphism.

Equivalently, the function α : M → N is an essential S-homomorphism
if and only if α(M) is a large subsemimodule of A. It follows that a
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subsemimodule K ′ of a left S-semimodule K is large in K if and only
if any subsemimodule of K containing K ′ is large in K.

Proposition 3.2.4. [13]Let K be a S-semimodule and If A is a sub-
semimodule of a left S-semimodule A, then the following are equiva-
lent:
(1)A is large in K.
(2)Suppose that ρ is a nontrivial S-congruence relation on K, then the
restriction of ρ to A is also nontrivial.
(3)Suppose that k and k′ are distinct elements of K, then there exist
distinct elements a and a′ of A satisfying a ρ(k, k′) a′.

Proof. (1) =⇒ (2): Let ρ be a nontrivial S-congruence relation on K,
and let f : K → K/ρ be an S-homomorphism defined by k 7→ k/ρ,

then f is not an S-monomorphism and hence, by (1) neither is its
restriction to A. So there are elements a 6= a′ of A such that a ρ a′,
so proving that the restriction of ρ to A is nontrivial.
(2) =⇒ (3): Since ρ is a nontrivial S-congruence relation on K, so we
can find distinct elements in K and A satisfying a ρ(k, k′) a′.
(3) =⇒ (1): Let f : K → K ′ be an S-homomorphism, then the
restriction of which to A is an S-monomorphism. If f is not injective,
then there exist distinct elements k and k′ of K such that k ρ f(k). By
(3), there exist distinct elements a and a′ of A such that k ρ(k, k′) a′

and so, a ρ f(a′, which is a contradiction. Thus f must be an S-
monomorphism, proving(1). �

Proposition 3.2.5. [13] Let I be an injective left S-semimodule, then
any essential S-monomorphism f : I → I ′ is an S-isomorphism.

Proof. Let I be injective and let f : I → I ′ be an essential S-
monomorphism, then there exists an S-homomorphism g : I ′ → I
such that g ◦ f is the identity map on I. Suppose a ∈ I ′ \ f(I), then
g(a) ∈ I so f ◦ g(a) 6= a. Since f ◦ g(a) ≡g a, that means ≡g is a
nontrivial S-congruence relation on I ′ therefore, by proposition 3.2.4
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f(v) = g ◦ f(v′), contradicting the choice of g. Therefore must have
I ′ = f(I) and so f is an S-isomorphism. �

Definition 3.2.6. [13] Let A be a left S-semimodule. If there exists
an injective left S-semimodule I and an essential S-monomorphism
f : A→ I, then I is an injective hull of A.

Note that by proposition 3.2. the injective hulls of nonzero S-semimodules
need not exist for every semiring S.

Proposition 3.2.6. [13] Let f : K → I and f ′ : K → I ′ are injective
hulls of a left S-semimodule K, then there exists an S-isomorphism
from I to I ′.

Proof. By injectivity, there exists an S-homomorphism η : I → I ′ such
that η ◦ f = f ′. Claim that this is the isomorphism we seek. Indeed,
since f ′ = η◦f is an S-monomorphism, we see by essentiality that η is
also an S-monomorphism. Suppose η : I ′ → A is an S-homomorphism
such that g◦η is an S-monomorphism. Then g◦η◦f = g◦f ′ is also an S-
monomorphism. But, f ′ is essential and so g is an S-monomorphism.
Thus, η is essential and so, we conclude by proposition 3.2.5, it is an
S-isomorphism, as claimed.

�

Proposition 3.2.7. Let N and A be a left S-smemodules, then:
(1)A N-e-injective if and only if A is normally N-injective.
(2)SA is e-injective if and only if SA is normally injective.

Proof. we need to prove only the first part: letN be a left S-semimodule.
(=⇒) Suppose that A is N -e-injective. Let K ≤ N be a subtractive
S − subsemimodule. By lemma 2.2.3, a short exact sequence of left
S-semimodules

0 −→ K
i−→ N

π−→ N/K −→ 0
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where i is the injection map and p is the projection map. By the as-
sumption, the contravariant functor HomS(−, H) : SSM −→ Z+SM
preserves exact sequences, whence the following sequence of commu-
tative monoids

0 −→ HomS(N/K,H)
(π,H)−−−→ HomS(N,H)

(i,H)−−−→ HomS(K,H) −→ 0

is exact. especially, (i,H) : HomS(N,H) −→ HomS(K,H) is a nor-
mal epimorphism, i.e. H is normally N-injective.
(⇐=) Let K, N and A are left S-semimodules, and the following
sequence:

0 −→ K
φ−→ N

β−→ A −→ 0 (17)

be an exact sequence. Now applying the contravariant functorHomS(−, H)
on (17), so we have that by lemma 2.3.4(2) and our assumption that
the following sequence of commutative monoids :

0 −→ HomS(K,H)
(β,H)−−−→ HomS(N,H)

(φ,H)−−−→ HomS(K,H) −→ 0

is exact, i.e. SH is exact.
�

Remark 3.2.1. every injective and e-injective semimodules are i-
injective.

Lemma 3.2.8. [3]
(1) Let N be a left S-semimodule. Every retract of a left N-e-injective
S-semimodule is N-e-injective.
(2) A retract of an e-injective S-semimodule is e-injective.

Proof. need to prove the first part only:
Let B be an N − e− injective left S-semimodule and A a retract of
B along with S-homomorphisims λ : A −→ B and γ : B −→ A such
that γ ◦ λ = idA. Let φ : Z → N be a normal S-monomorphism and
β : Z → A be an S-homomorphism.
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0 Z N

A

B

φ

β

∃η∗
λ

Since B is N-e-injective, there is an S − Homomorphism map η∗ :
N → B such that η∗ ◦ φ = λ ◦ β. Consider η = γ ◦ η∗ : η ◦ φ =
(γ ◦ η∗) ◦ φ = γ ◦ (η∗ ◦ φ) = γ ◦ (λ ◦ β) = (γ ◦ λ) ◦ β = idA ◦ β = β.
Suppose η′ : N → A is an S-homomorphism such that η′ ◦ φ = β.
Note that λ ◦ η′ ◦ φ = λ ◦ β. Since B is N − e− injective, there exist
S-homomorphisms η∗1, η

∗
2 : N → B such that η∗1 ◦ φ = 0 = η∗2 ◦ φ and

η∗ + η∗1 = λ ◦ η′ + η∗2 .

0 Z N B

A

B

∃η∗1

∃η∗2

f

β

λ

η

η′

∃η∗

Consider η1 = γ ◦ η∗1 and η2 = γ ◦ η∗2. Then we have for i = 1, 2, ηi ◦
φ = γ◦η∗i ◦φ = γ◦0 = 0. Moreover, we have η+η1 = γ◦λ◦η+γ◦η∗1 =
γ ◦ (λ ◦ η + η∗1) = γ ◦ (λ ◦ η′ + η∗2) = γ ◦ λ ◦ η′ + γ ◦ η∗2 = η′ + η2.

�
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Proposition 3.2.9. [3] Let N be a left S-semimodule and the set
{Aλ}λ∈Λ is a family of left S-semimodules, then Π

λ∈Λ
is N−e−injective

if and only if Aλ is N − e− injective for any λ ∈ Λ.

Proof. Let A = Π
λ∈Λ

and, for any λ ∈ Λ, let iλ : Aλ −→ A and

πλ : A −→ Aλ be the canonical S-homomorphisms.
(=⇒) For any λ ∈ Λ, we have πλ ◦ iλ = idAλ, i.e. Aλ is a retract of A,
so Ai is N − e− injective (By lemma 3.2.8( .
(⇐=) Suppose that Aλ is N − e − injective for any λ ∈ Λ. Let
φ : Z → N be a normal monomorphism and β : Z → A an S-
homomorphism.

0 Z N

A

Aλ

φ

β

πλ
∃η∗λ

SinceAλ isN−e−injective for any λ ∈ Λ, there is an S-homomorphism
η∗λ : N → Aλ such that η∗λ ◦ φ = πλ ◦ β. By the Universal Property of
Direct Products, there exists an S-homomorphism

η : N −→ A, n 7→
∏
λ∈Λ

(iλ ◦ η∗λ)(m).

Note that for any z ∈ Z, we have that

(η ◦ φ)(z) =
∏
λ∈Λ

(iλ ◦ η∗λ)(φ(z)) =
∏
λ∈Λ

(iλ ◦ πλ)(β(z)) = β(z).

Assume that there exists an S-homomorphism η′ : N → A such that
η′ ◦ φ = β. It follows πλ ◦ η′ ◦ φ = πλ ◦ β for any λ ∈ Λ. Since Aλ is
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N−e−injective, then there exist S-homomorphisms η∗1λ, η
∗
2λ

: N → A
such that η∗1λ ◦ f = 0 = η∗2λ ◦ φ and η∗λ + η∗1λ = πλ ◦ η′ + η∗2λ.

0 Z N Aλ

A

Aλ

∃η∗1λ

∃η∗2λ

φ

β

πλ

∃η

∃η∗λ

∃η′

For i = 1, 2, there exists by the Universal Property of Direct Products
an S-homomorphism

ηi : N −→ A, n 7→
∏
λ∈Λ

(iλ ◦ η∗iλ)(n).

For i = 1, 2 and any z ∈ Z we have that (ηi ◦ φ)(l) = Π
λ∈Λ

(iλ ◦
η∗iλ)(φ(z)) = Π

λ∈Λ
iλ(0) = 0. Moreover, we have for any n ∈ N :

(η + η1)(n) = Π
λ∈Λ

(iλ ◦ πλ ◦ η)(n) + Π
λ∈Λ

(iλ ◦ η∗1λ)(n)

= Π
λ∈Λ

(iλ ◦ (πλ ◦ η + η∗1λ))(n)

= Π
λ∈Λ

(iλ ◦ (eta∗λ + η∗1λ))(n)

= Π
λ∈Λ

(iλ ◦ (πλ ◦ η′2λ))(n)

= Π
λ∈Λ

(η′ + iλ ◦ η∗2λ)(n)

= (η′ + η2)(n).

�
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Chapter 4

Future work

We will be working on making a characterization of weekly projective
semimodule, it will take into consideration all the aspects presented in
the weekly projective module. which is defined as the following:

• Recall that An epimorphism p : P −→ M is called a projective
cover of M if and only if P is projective and p is a small epi-
morphism (ker(p) is small in P ). We denote projective cover of
M by P(M).

• Recall that A module M is called weakly projective if and only if
has a projective cover α : P (M) −→M and every map from P(M)
into a finitely generated (free) module can be factored through M
via an epimorphism (not nonsecretly equal α)

Therefore, the proposed definition of weekly projective semimodule
will be mainly dependent on the definition of the projective cover of
semimodule (Def.3.1.5). And it will be as follows:

An S-semimodule M is weakly projective semimodule if and only
if has a projective cover α : P (M) −→ M and every map from P(M)
into a finitely generated semimodule can be factored through M via an
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surjective S-homomorphism (not nonsecretly equal α).

The expected difference between the two definitions (weakly projec-
tive module and the proposed definition of weakly projective semimod-
ule) will be in the nature of definitions of modules and semimodules.

After we proposed our definition, we will make sure that this it is not
another definition of semimodule, and it will be by using a counter ex-
ample to prove that every projective semimodule is weekly projective
semimodule but the converse is not.
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